Adult hippocampal neurogenesis in depression

Amar Sahay & Rene Hen

The development of new treatments for depression is predicated upon identification of neural substrates and mechanisms that underlie its etiology and pathophysiology. The heterogeneity of depression indicates that its origin may lie in dysfunction of multiple brain regions. Here we evaluate adult hippocampal neurogenesis as a candidate mechanism for the etiology of depression and as a substrate for antidepressant action. Current evidence indicates that adult hippocampal neurogenesis may not be a major contributor to the development of depression, but may be required for some of the behavioral effects of antidepressants. We next revisit the functional differentiation of the hippocampus along the septo-temporal axis within the context of adult hippocampal neurogenesis and suggest that neurogenesis in the ventral dentate gyrus may be preferentially involved in regulation of emotion. Finally, we speculate on how increased adult hippocampal neurogenesis may modulate dentate gyrus function to confer the behavioral effects of antidepressants.

Hippocampus and depression

Elucidating the neurobiological basis of depression is one of the foremost challenges for today’s society. Severe forms of depression affect 2–5% of the US population, and mood disorders impact 7% of the world’s population and rank among the top ten causes of disability. The heterogeneity of depression implies that multiple neural substrates and mechanisms contribute to its etiology. The development of new treatments is likely to emerge from the identification of etiological mechanisms or of pivotal components of the pathophysiology of depression. This is best exemplified in development of the circuit-specific application of deep brain stimulation to ameliorate treatment-refractory depression. The success of this endeavor relied on the identification of subgenual cingulate (Cg25) as a key neural substrate of the pathophysiology of depression.

The hippocampus is one of several limbic structures that have been extensively studied in individuals with depression. Magnetic resonance imaging studies have consistently shown a reduction in hippocampal volume, and two meta-analyses have compellingly demonstrated a reduction in hippocampal volume in people with recurrent depression relative to age- and sex-matched controls. Moreover, the frequency of depressive episodes and how long the depression remains untreated correlate with the magnitude of reduction in hippocampal volume. Although functional magnetic resonance imaging studies suggesting hippocampal dysfunction in depressed patients are lacking, one study assessed hippocampal function using a virtual-reality spatial memory navigation task and found that depressed subjects performed significantly worse than controls. Altered hippocampal function, in turn, may influence the activity of neural circuitry in the prefrontal cortex, amygdala and nucleus accumbens, structures that receive inputs from the hippocampus and are associated with emotionality. Moreover, optimal function of the hippocampal formation is critical for modulation of the hypothalamic-pituitary axis and regulation of the stress response, dysregulation of which is observed in almost half of all depressed patients. The neural substrates that underlie the response to antidepressants also include the hippocampus. Positron emission tomography imaging of depressed patients treated with selective serotonin reuptake inhibitors indicates the involvement of corticolimbic circuits. Structures that show changes in metabolic activity include the subgenual cingulate, hippocampus and prefrontal cortex.

Adult hippocampal neurogenesis and antidepressant action

One of the primary catalysts for focusing on adult hippocampal neurogenesis in depression is the observation that most antidepressants and environmental interventions that confer antidepressant-like behavioral effects stimulate adult hippocampal neurogenesis. The time course of maturation of newly generated neurons in the dentate gyrus, which is generally consistent with the delayed onset of therapeutic action of antidepressants, and the unique physiological properties of adult-born dentate granule neurons qualify adult hippocampal neurogenesis as a potential mechanism or substrate underlying antidepressant action. The most compelling evidence linking adult hippocampal neurogenesis with antidepressants comes from our laboratory, in a study demonstrating that neurogenesis is necessary for the effects of imipramine, a tricyclic antidepressant, and fluoxetine, a selective serotonin reuptake inhibitor, in two mouse behavioral screens for antidepressant activity. Two independent studies confirmed these initial findings. In rats, the synthetic cannabinoid HU210 has antidepressant-like behavioral effects that depend on neurogenesis. The behavioral effects of fluoxetine in rats as assessed in the forced-swim test also require neurogenesis. Taken together, these studies show a requirement for adult hippocampal neurogenesis in mediating the behavioral effects of antidepressants for three different drugs in several tests for antidepressant-like activity.

Given the pleiotropic effects of antidepressants on neural circuitry, dentate gyrus neurogenesis is one of several mechanisms in the adult brain that antidepressants may harness to exert their behavioral...
effects. Moreover, studies from our laboratory indicate that the
dependence of behavioral effects of antidepressants on neurogenesis
may be shaped by several factors, including the genetic make-up of the
organism and the nature of the antidepressant (mechanism and site of
action)\(^38\). In a highly anxious strain of mice, BALB/c, anxiolytic and
antidepressant-like behavioral effects of chronic fluoxetine treatment
are not blocked by ablation of neurogenesis\(^39\). Furthermore, drug
treatment in this strain does not stimulate neural stem cell proliferation
in the dentate gyrus. Beneficial effects of environmental enrichment
and exercise on learning and on anxiety-like behavior can occur
independently of increased adult hippocampal neurogenesis\(^40\). The
anxiolytic and antidepressant-like effects of a melanin-concentrating
hormone receptor antagonist do not require neurogenesis\(^41\). Thus,
antidepressants are likely to exert their behavioral effects through
neurogenesis-dependent and neurogenesis-independent pathways\(^37\)
(Fig. 1). A neurogenesis dependence of antidepressants is likely to be
influenced by network activity. There is growing evidence documenting
the effects of neuronal activity on the proliferation of neural stem cells
and the maturation and integration of adult-born dentate gyrus
neurons\(^42-46\). The plasticity and excitability of adult-born neurons
are sensitive to the properties of the hippocampal network. Pilocarpine-induced seizures cause accelerated maturation of new neurons\(^47\),
whereas status epilepticus induced by stimulation of the ventral
hippocampus causes reduced excitatory synaptic input and increased
inhibitory drive in new neurons\(^48\). Thus, the effects of network activity
on the physiological properties of new neurons are diverse, and
homeostatic mechanisms ensure that the integration of new neurons
in the adult dentate gyrus occurs in tune with the network’s needs.
Similarly, we propose that the neurogenesis dependence of antidepressants
is intimately related to the properties of the hippocampal
network, which in turn is shaped by genetic and environmental factors.

Identifying components of biological contexts that are conducive to
a neurogenic dependence warrants further investigation. Is increasing
the number of new neurons in the dentate gyrus sufficient to confer
some of the behavioral effects of antidepressants? The development of
noninvasive inducible genetic strategies that specifically target new
neurons in the dentate gyrus will allow researchers to test this hypothesis
and facilitate dissection of the interplay between adult hippocampal
neurogenesis and network activity. Newly generated neurons receive
excitatory inputs and show a lower threshold for LTP induction as early as
18 days after birth\(^27,29\) but show enhanced long term potentiation
at 4–6 weeks after birth\(^30\); this begs resolution of the age at
which adult-born neurons are substrates for the behavioral effects of
antidepressants.

Adult hippocampal neurogenesis and etiology of depression
The possibility that adult-born neurons are required for some of the
behavioral effects of antidepressants and the well documented deleterious
effects of stress on adult hippocampal neurogenesis has fueled
investigation into whether impaired adult neurogenesis is an etiological
factor for depression\(^49,50\). At the structural level, it is highly unlikely
that changes in adult hippocampal neurogenesis account for the
reduction in hippocampal volume in patients with depression. Stereo-
logical analysis of hippocampal volume in irradiated mice did not show
a significant reduction\(^33\). Pathohistological studies of postmortem
tissue indicate that changes in neuropil and glial cell number may be
responsible for reductions in hippocampal volume\(^51\), as do studies
documenting the effects of stress on hippocampal white matter.
Preclinical studies show that volumetric changes result from reduced
dendritic complexity and not from ablation of hippocampal neuro-
genesis\(^53,55\). More evidence undermining a role for neurogenesis in the
etiology of depression comes from studies showing that ablation of
neurogenesis does not elicit a depression-like or anxiety-like pheno-
type\(^33,35\). Blocking hippocampal neurogenesis does not influence
anxiety-related behavior as assessed in conflict-based tests, such as
the open field, light-dark choice test, and elevated plus-maze\(^53\), or
in anxiety tests that are also used to screen for antidepressant activity,
such as novelty-suppressed feeding\(^33,40\). Furthermore, mice lacking adult
hippocampal neurogenesis do not show increased susceptibility to the
effects of chronic stress as assessed by grooming response\(^33\) or
depressed-like behavior in the forced-swim test\(^35,39\). One apparent
shortcoming of these studies is that they rely on wild-type animals and
assess the effects of ablating neurogenesis independent of changes in
network properties. It could be that reductions in neurogenesis when
combined with a genetic predisposition or an environmental insult
result in pathophysiology in adulthood. Alternatively, it may be more
pertinent to ask whether altered dentate gyrus development—that is,
neurogenesis during the early postnatal period when the dentate gyrus
develops, rather than adult hippocampal neurogenesis—is causally
related to the depression-like behaviors in animal models.

Adult hippocampal neurogenesis and cognition
Deficits in adult hippocampal neurogenesis may underlie the cognitive
deficits seen in depression. Work from our laboratory and others’ using
animal models in which adult hippocampal neurogenesis is ablated or
blocked has shown that new neurons are required for some forms of
hippocampus-dependent learning. Reducing or blocking hippocampal
neurogenesis in rats or mice affects hippocampus-dependent forms of
fear conditioning\(^33,35\), long-term spatial memory\(^56\) and working
memory\(^55,57\). In addition, several models have been proposed for
how neurogenesis influences the structure and function of the dentate
gyrus\(^58-63\). Much remains to be done to understand how blocking adult
hippocampal neurogenesis relates to the deficits observed in these
different behavioral paradigms. Current data imply roles for adult-born
neurons in encoding and storing memory. Noninvasive genetic
approaches that confer reversible manipulation of adult-born neurons
are needed to replicate these findings and resolve the inconsistencies
that are due to limitations of existing methodologies used to arrest
neurogenesis\(^33-35,64\). The flexibility of inducible genetic approaches
will also allow researchers to assess the contribution of new neurons to
different stages of learning such as acquisition, consolidation and retrieval.

The study of adult hippocampal neurogenesis in depressed patients is still in its infancy and has relied primarily on histological examination of postmortem tissue. The only study to date did not detect a difference in proliferation of stem cells in the hippocampus of depressed patients. Although notable, the study is limited in power and confounded by the effects of medication (12 of 15 patients were on medication at time of death) that may mask small differences in proliferation. More importantly, given the built-in homeostatic mechanisms that act at each stage of progression from stem cell to mature neuron, it is very difficult to extrapolate from analysis of one stage alone (A.S. and R.H., unpublished results). A more informative parameter is whether the number of newly generated young neurons is altered in patients with depression and after antidepressant treatment. Just as important as inspection of adult hippocampal neurogenesis is assessment of the integrity of the dentate gyrus in depressed patients. Histological analysis of the dentate gyrus of depressed patients shows a significant increase in packing density of dentate granule cells and a trend toward a reduction in soma size. More studies with greater power and inclusion of postmortem tissue of unmedicated depressed patients are needed to follow up on these findings.

In conclusion and caveats notwithstanding, the evidence indicates that hippocampal neurogenesis may be involved in the treatment of depression but not in its etiology. This could mean that adult hippocampal neurogenesis is a process that lies downstream of the locus or mechanisms involved in the development of depression. How adult hippocampal neurogenesis contributes to the regulation of emotion is an open question. One approach to studying this problem is to ask whether new neurons may serve distinct roles along the septo-temporal axis along which functional differentiation of the hippocampus is observed. We revisit this concept in the context of adult hippocampal neurogenesis in the next section.

Adult hippocampal neurogenesis along the longitudinal axis

The changing afferent and efferent connectivity of the hippocampus along the longitudinal axis found in early anatomical studies in rodents and primates first implied discrete functions for the dorsal (septal pole) and the ventral (temporal pole) hippocampus in learning and emotionality, respectively (see ref. 13 for a review). In rodents, the septal half of the dentate gyrus receives projections arising in the lateral and caudomedial portion of the entorhinal cortex, whereas the temporal pole of the dentate gyrus receives inputs from the most rostromedial region of the entorhinal cortex. Functionally, this topographic pattern of innervation translates into highly processed visuo-spatial sensory information entering the dorsal dentate gyrus, unlike olfactory inputs, which appear to distribute evenly along the septo-temporal axis. Mirroring the segregation of dentate gyrus afferents along the septo-temporal axis is the pattern of hippocampal outputs to the rest of the brain. The ventral hippocampus, unlike the dorsal hippocampus, sends projections to the prefrontal cortex. In addition, there are strong connections of the ventral hippocampus to the amygdala, shell of nucleus accumbens, bed nucleus of stria terminalis, and structures associated with the hypothalamic-pituitary-adrenal axis. Differences in the constituent cell types and intrinsic connectivity of the hippocampus along the septo-temporal axis distinguish the dorsal and ventral hippocampus even further. Notably, select classes of interneurons and the mossy cells, which give rise to the commissural-associational system, are more enriched in the ventral hilus. The function of hilar mossy cells and interneurons is, in turn, modulated by dopaminergic, noradrenergic and serotonergic inputs, which also show a ventral hippocampal bias in their innervation. The innervation density of serotonergic projections, for example, varies markedly, from the very dense serotonergic plexuses in the ventral hippocampus to the weak innervation seen in the dorsal part. Lesion studies in animals substantiate the dissociation between the dorsal and ventral hippocampus in learning and emotion. Lesions of the dorsal hippocampus affect spatial learning and memory, whereas those of the ventral hippocampus affect anxiety and have no effect on spatial learning. Electrophysiological evidence indicates that the ventral hippocampus may modulate dopaminergic transmission in the prefrontal cortex and nucleus accumbens. In addition, the dorsal and ventral hippocampus show distinct patterns of gene expression, indicating a molecular heterogeneity along the septo-temporal axis.

Given the differences in hippocampal circuitry and functions along the septo-temporal axis, it is reasonable to suspect that neurogenesis in the dorsal and ventral dentate gyrus may contribute differentially to learning and regulation of emotion. Indeed, two recent studies indicate that antidepressants may exert their behavioral effects by increasing neurogenesis in the ventral dentate gyrus. One study showed that chronic treatment with agomelatine, an antidepressant that is a
melatonin agonist and a 5-HT₁C serotonin receptor antagonist, increases neurogenesis only in the ventral dentate gyrus. A second study reported differential effects of chronic mild stress on dorsal and ventral dentate gyrus proliferation. Specifically, exposure to chronic mild stress resulted in decreased cell proliferation in the ventral, but not dorsal, hippocampus. Furthermore, the authors showed a correlation between a behavioral response to escitalopram following chronic mild stress and increased proliferation in the ventral DG. It is possible that the asymmetry in serotonergic innervation, mossy cells and hilar interneurons may contribute to these differential effects of antidepressants on dentate gyrus neurogenesis. Although correlative, these observations warrant a direct assessment of the contribution of ventral hippocampal neurogenesis to the antidepressant response.

Concluding remarks

Based on current evidence, the neurogenic hypothesis for depression warrants revision in that adult hippocampal neurogenesis is more likely a substrate for the behavioral effects of antidepressants than a pivotal contributor to the etiology of depression. That said, there is much ground to traverse before adult hippocampal neurogenesis qualifies as a bona fide target for therapeutic intervention.

First, we need to understand how increasing the number of young dentate granule neurons or modifying their properties confers antidepressant-like behavioral responses. As stated earlier, the increase in number of young dentate granule cells seen after chronic antidepressant treatment is likely to be accompanied by changes in network activity. Using gain-of-function approaches that selectively enhance distinct components of adult hippocampal neurogenesis, we can study the relationship between network activity and dentate gyrus neurogenesis and their contributions to the behavioral effects of antidepressants. One potential mechanism by which the antidepressant-dependent increase in newly generated neurons may modulate dentate gyrus function is by enhancing the decorrelation of entorhinal cortical inputs to form discrete representations in memory (pattern separation) (Fig. 1).

A first step toward answering this question is to understand how adult hippocampal neurogenesis influences pattern separation in the dentate gyrus, whether through replacement of older neurons, net addition of young and more plastic units, or insertion of new neurons with specific biochemical and physiological properties related to the animal’s experience. Recordings from the dentate gyrus in awake behaving animals in which neurogenesis is selectively and bidirectionally modulated, combined with visualizing dentate gyrus activity with immediate-early genes, will shed light on how neurogenesis contributes to basic processes that underlie pattern separation, such as sparse activation of dentate granule cells and decorrelation of firing rate distribution of individual dentate granule cells. It is also plausible that newly generated neurons, in addition to serving as substrates for encoding, may facilitate encoding by modulating the properties of mature dentate granule cells such as excitability (Fig. 1). Such a non–cell-autonomous requirement for new neurons is supported by the finding that the global increase in activity in the dentate gyrus observed after antidepressant treatment depends on neurogenesis. Our understanding of the precise contribution of ventral hippocampal neurogenesis to the behavioral effects of antidepressants will benefit from a circuit-based approach that integrates the role of monoaminergic hilar afferents and hilar targets of newly generated granule cells such as mossy cells and interneurons (Fig. 2). Another outstanding issue is the nature of changes in circuitry downstream of the dentate gyrus. Specifically, when adult hippocampal neurogenesis is enhanced, what are the consequences for neural activity in structures that receive efferents arising in the dorsal and ventral hippocampus? Experiments addressing this issue will inform us on how enhancement of dentate gyrus function after antidepressant treatment translates into changes in the other hippocampal subfields as well as in downstream structures associated with depression, such as the prefrontal cortex, nucleus accumbens, amygdala and hypothalamus.

As much as preclinical models are indispensable instruments for establishing causality, the translation of findings from animal models to humans requires validation in depressed individuals of core concepts gleaned from animal studies. In primates, although the evidence is preliminary, some antidepressant-like treatments can stimulate adult hippocampal neurogenesis. We still do not know whether dentate gyrus function is altered in human patients with depression and after antidepressant treatment. The development of imaging techniques to visualize or follow adult hippocampal neurogenesis is crucial to this endeavor. It also remains to be seen whether depressed patients show deficits in dentate gyrus functions, such as pattern separation.

In conclusion, the study of adult hippocampal neurogenesis in depression has benefited tremendously from the scrutiny and attention it has received. Ultimately, parallel studies in animal models and humans will determine the value of adult hippocampal neurogenesis as a target for the treatment of depression.

ACKNOWLEDGMENTS

The authors are grateful to H. Scharfman, J. Gordon, C. Lacefield, M. Drew and E.D. Leonardo for their critical comments on earlier versions of this manuscript. This work was supported by NARSAD (A.S. and R.H.) and the US National Institute of Mental Health (R.H.).

COMPETING INTERESTS STATEMENT

The authors declare competing financial interests: details accompany the full-text HTML version of the paper at http://www.nature.com/natureneuroscience.

Published online at http://www.nature.com/natureneuroscience
Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissions

